
Pattern Mining
with

Deep Learning

DMV course, M2 SIF

Alexandre Termier

2022/2023

 version !



Introduction

• Overaching goal: capture patterns in data
• Patterns are not limited to itemsets/sequences/…. !

• All machine learning methods capture some kind of patterns in data
• One cannot classify/predict/cluster in chaos

• Patterns found by ML methods
• Can be seen as a “by-product” of the ML method
• Are not easy to understand by humans / are not designed for that…
• …and its often hard to retrieve them from the ML model
• But they can contain valuable insights about the data



From Machine Learning to Pattern Mining…and back

• Question of the day: 
• Can we design a Neural Net where the « internally learnt » patterns are interesting

itemsets?

• Question for another day:
• Can pattern mining be used to understand what are the patterns learned by a Deep

Neural Network?

• Ongoing research
• See the following paper for a first taste: 

Luca Veyrin-Forrer, Ataollah Kamal, Stefan Duffner, Marc Plantevit, Céline Robardet: What Does My GNN 
Really Capture? On Exploring Internal GNN Representations. IJCAI 2022: pp 747-752

https://www.ijcai.org/proceedings/2022/105


BinaPs
Jonas Fischer, Jilles Vreeken

« Differentiable Pattern Set Mining »

KDD 2021

pp. 383-392



Motivation

• Really interesting pattern mining problem: mine Single Nucleotide Polymorphism
(SNP) data
• 100k – 1M items
• dense

• Current state of the art problem in pattern mining: find a pattern set

• Pattern set 
• (small) set of patterns that captures the main structures existing in the data
• See Peggy’s course at the end of DMV module

• Problem: doubly exponential time complexity + algo rely on heuristics
• Do not scale at all for the mining of SNPs



On the other side of the fence…

• (Deep) Neural Nets methods can handles millions of features

• Some approaches can handle binary data

• So…could NN be made to find a good pattern set on SNP data?
• What architecture ?

• What loss ?



Auto-encoders in a nutshell

Figure: https://lilianweng.github.io/posts/2018-08-12-vae/

Auto-encoder:
- Learns low-dim representation

of input
- Learns to encode and decode

from this low-dim
representation

- The low-dim representation
should capture « patterns » of 
the input data

https://lilianweng.github.io/posts/2018-08-12-vae/


General idea of BinaPs

Figure from KDD21 video presentation of Jonas Fischer https://dl.acm.org/doi/10.1145/3447548.3467348

Input 
(items)

Output 
(items)

Pattern
layer

• Autoencoder with 1 hidden layer
• Binary input/output 

• Hidden layer captures the patterns

https://dl.acm.org/doi/10.1145/3447548.3467348


Difficulty

• For interpretable results, weigths must 
be binary

• But for proper loss optimization, weights
should be continuous (differentiable)…

• Solution:
• Binary weights in the forward pass

• Continuous weights in the backward pass

Figure from KDD21 video presentation of Jonas Fischer https://dl.acm.org/doi/10.1145/3447548.3467348

https://dl.acm.org/doi/10.1145/3447548.3467348


Forward pass

Binary
weight
matrix

Mirror

Negative bias = minus size of pattern: 
pattern neuron activate ONLY if all items of the 
pattern are found

Figure from KDD21 video presentation of Jonas Fischer https://dl.acm.org/doi/10.1145/3447548.3467348

https://dl.acm.org/doi/10.1145/3447548.3467348


Encoding

Decoding

Forward pass



Forward +
backward

Figure from KDD21 video presentation
of Jonas Fischer https://dl.acm.org/doi/10.1145/3447548.3467348

https://dl.acm.org/doi/10.1145/3447548.3467348


Backpropagation

• Reconstruction loss needs to take into account the sparsity of the 
data

-> sparsity of data

• Definition of relevant derivatives for chain rule: see paper

• At the end of the backpropagation :
• Weights are binarized (W -> Wb)
• Bias is discretized (max = -1 -> patterns will be of size > 1)



Complete example

Example from original paper



Results on 
synthetic
data



Take home message 

• NN can operate in the binary space of transaction matrices, and find
find good pattern sets
• The « main trick » is to switch back and forth between binary space for 

pattern definition and data reconstruction, and continuous space for 
optimization

• The approach scales way better than state of the art in pattern sets
• Opens the possibility to analyze realistic SNPs datasets



Where to go from here?

• Extending the approach to other pattern langages
• Graphs: get help from large body of work on GNN?

• Sequences?

• First, simpler variations of itemsets – ex: generalized itemsets?

• BinaPs optimization (gradient descent) works well – MDL’s one 
doesn’t: why?
• Could some ways to optimized be « borrowed » to improve MDL-based

approaches heuristics?

• More generally: have we been exploring the pattern space « wrong » all this
time?


