Pattern Mining
withα version !Deep Learning

DMV course, M2 SIF

Alexandre Termier

2022/2023

Introduction

- Overaching goal: capture patterns in data
 - Patterns are not limited to itemsets/sequences/.... !
- All machine learning methods capture some kind of patterns in data
 - One cannot classify/predict/cluster in chaos
- Patterns found by ML methods
 - Can be seen as a "by-product" of the ML method
 - Are not easy to understand by humans / are not designed for that...
 - ...and its often hard to retrieve them from the ML model
 - But they can contain valuable insights about the data

From Machine Learning to Pattern Mining...and back

• Question of the day:

 Can we design a Neural Net where the « internally learnt » patterns are interesting itemsets?

• Question for another day:

- Can pattern mining be used to understand what are the patterns learned by a Deep Neural Network?
- Ongoing research
- See the following paper for a first taste:

Luca Veyrin-Forrer, Ataollah Kamal, Stefan Duffner, Marc Plantevit, Céline Robardet: <u>What Does My GNN</u> <u>Really Capture? On Exploring Internal GNN Representations</u>. IJCAI 2022: pp 747-752

BinaPs

Jonas Fischer, Jilles Vreeken « Differentiable Pattern Set Mining » KDD 2021 pp. 383-392

Motivation

- Really interesting pattern mining problem: mine Single Nucleotide Polymorphism (SNP) data
 - 100k 1M items
 - dense
- Current state of the art problem in pattern mining: find a pattern set

Pattern set

- (small) set of patterns that captures the main structures existing in the data
- See Peggy's course at the end of DMV module
- Problem: doubly exponential time complexity + algo rely on heuristics
 - Do not scale *at all* for the mining of SNPs

On the other side of the fence...

- (Deep) Neural Nets methods can handles millions of features
- Some approaches can handle binary data
- So...could NN be made to find a good pattern set on SNP data?
 - What architecture ?
 - What loss ?

Auto-encoders in a nutshell

Auto-encoder:

- Learns low-dim representation of input
- Learns to encode and decode from this low-dim representation
- The low-dim representation should capture « patterns » of the input data

General idea of BinaPs

- Autoencoder with 1 hidden layer
- Binary input/output
- Hidden layer captures the patterns

Difficulty

- For interpretable results, weigths must be binary
- But for proper loss optimization, weights should be continuous (differentiable)...
- Solution:
 - Binary weights in the forward pass
 - Continuous weights in the backward pass

Forward pass

Figure from KDD21 video presentation of Jonas Fischer <u>https://dl.acm.org/doi/10.1145/3447548.3467348</u>

Forward pass

Figure from KDD21 video presentation of Jonas Fischer <u>https://dl.acm.org/doi/10.1145/3447548.3467348</u> 4. Clamp W, b and get binarized W_b , discretized b_d

Backpropagation

Reconstruction loss needs to take into account the sparsity of the data

$$L_{\alpha}(D[i]; W, b) = \sum_{j \in [1,m]} \left((1 - D[i,j])\alpha + D[i,j](1-\alpha) \right) |z_{ij} - D[i,j]|$$

 $\alpha = rac{\#1s}{\#1s+\#0s}$ -> sparsity of data

- Definition of relevant derivatives for chain rule: see paper
- At the end of the backpropagation :
 - Weights are binarized (W -> W_b)
 - Bias is discretized (max = -1 -> patterns will be of size > 1)

Complete example

Example from original paper

Take home message

- NN can operate in the binary space of transaction matrices, and find find good pattern sets
 - The « main trick » is to switch back and forth between binary space for pattern definition and data reconstruction, and continuous space for optimization
- The approach scales *way better* than state of the art in pattern sets
 - Opens the possibility to analyze realistic SNPs datasets

Where to go from here?

- Extending the approach to other pattern langages
 - Graphs: get help from large body of work on GNN?
 - Sequences?
 - First, simpler variations of itemsets ex: generalized itemsets?
- BinaPs optimization (gradient descent) works well MDL's one doesn't: why?
 - Could some ways to optimized be « borrowed » to improve MDL-based approaches heuristics?
 - More generally: have we been exploring the pattern space « wrong » all this time?