Pattern Mining
with
Deep Learning

DMV course, M2 SIF

Alexandre Termier

2022/2023

Introduction

e Overaching goal: capture patterns in data
 Patterns are not limited to itemsets/sequences/.... !

* All machine learning methods capture some kind of patterns in data
* One cannot classify/predict/cluster in chaos

* Patterns found by ML methods
* Can be seen as a “by-product” of the ML method
* Are not easy to understand by humans / are not designed for that...
 ...and its often hard to retrieve them from the ML model
* But they can contain valuable insights about the data

From Machine Learning to Pattern Mining...and back

* Question of the day:

* Can we design a Neural Net where the « internally learnt » patterns are interesting
itemsets?

* Question for another day:

e Can pattern mining be used to understand what are the patterns learned by a Deep
Neural Network?

* Ongoing research
* See the following paper for a first taste:

Luca Veyrin-Forrer, Ataollah Kamal, Stefan Duffner, Marc Plantevit, Céline Robardet: What Does My GNN
Really Capture? On Exploring Internal GNN Representations. IJCAl 2022: pp 747-752

https://www.ijcai.org/proceedings/2022/105

BinaPs

Jonas Fischer, Jilles Vreeken

« Differentiable Pattern Set Mining »
KDD 2021

pp. 383-392

Motivation

* Really interesting pattern mining problem: mine Single Nucleotide Polymorphism
(SNP) data

e 100k - 1M items
 dense

e Current state of the art problem in pattern mining: find a pattern set

* Pattern set
* (small) set of patterns that captures the main structures existing in the data
» See Peggy’s course at the end of DMV module

* Problem: doubly exponential time complexity + algo rely on heuristics
* Do not scale at all for the mining of SNPs

On the other side of the fence...

* (Deep) Neural Nets methods can handles millions of features
* Some approaches can handle binary data

* So...could NN be made to find a good pattern set on SNP data?
* What architecture ?
* What loss ?

Auto-encoders in a nutshell

Input <« Ideally they are identical. ------------------ > Rec%:ztl::ﬂed Auto-encoder:
x ~ x’ '
- Learns low-dim representation
of input
Sottlonack! - Learns t_o encoo.le and decode
Encoder Decoder from this lO_N-dIm
X 9o . fo x! representation
- The low-dim representation
An compressed low dimensional should capture « patterns » of
representation of the input. the inpu t data

Figure: https://lilianweng.qgithub.io/posts/2018-08-12-vae/

https://lilianweng.github.io/posts/2018-08-12-vae/

transactions

General idea of BinaPs

items

]] 0 0 0
] | 0 | |
] 0 | | |
0 0 0 1 |

e Autoencoder with 1 hidden layer
e Binary input/output

e
* Hidden layer captures the patterns <>

Input Output
(items) (items)
]
s
-~ Pattern
layer

Figure from KDD21 video presentation of Jonas Fischer https://dl.acm.orq/doi/10.1145/3447548.3467348

https://dl.acm.org/doi/10.1145/3447548.3467348

Difficulty

* For interpretable results, weigths must

Input Output be binary
(items) (items)

e But for proper loss optimization, weights
should be continuous (differentiable)...

* Solution:
* Binary weights in the forward pass
e Continuous weights in the backward pass

N Pattern
layer

Figure from KDD21 video presentation of Jonas Fischer https://dl.acm.orq/doi/10.1145/3447548.3467348

https://dl.acm.org/doi/10.1145/3447548.3467348

Forward pass

Input Binary

weight
matrix

Pattern Ovut
: put
' yer Mirror

Negative bias = minus size of pattern:
pattern neuron activate ONLY if all items of the
pattern are found

Figure from KDD21 video presentation of Jonas Fischer https://dl.acm.orq/doi/10.1145/3447548.3467348

https://dl.acm.org/doi/10.1145/3447548.3467348

Encoding Forward pass

SR ACEE WY B WO RERICEY

Q/ Q 3
Q/va &J\‘\fojh‘QVL
Decoding W, - \ }t “
O
/

o B4 A(gw) 6
O @)
' U@\Q XoRuAR) PASS = gb (3%@)

Forward +
backward rars &0

1. reconstruct

2. compute loss Lw »(X)
3. backpropagate <SS wroVeE w
dLy »(X) dLy p(X) : j a2 ‘
dw db ! N|)N
) b \

Fisure rom KDD21 video presentation 4. Clamp W, b and get binarized W,,, discretized b,

of Jonas Fischer https://dl.acm.orq/doi/10.1145/3447548.3467348 ——

https://dl.acm.org/doi/10.1145/3447548.3467348

Backpropagation

e Reconstruction loss needs to take into account the sparsity of the
data

Lo(Di]; W, b) = [Z | (1= D[, jl)a + Dli, ji(1 — &))|z — Dli, jl|
je|l,m

K = #111—105 -> sparsity of data

* Definition of relevant derivatives for chain rule: see paper

e At the end of the backpropagation :
* Weights are binarized (W ->W,)
* Bias is discretized (max = -1 -> patterns will be of size > 1)

Output

y

S
Q

Pattern
Layer

5

Input

Iltems |
0 00011

Database D

Complete example

:
)
»

W

N
N
(K

Y
ul

111100
111111
110001
110001
000011

M
N
\ ZZ
3
7/
/A
17,
A\

/

S sajdwes

110001

bg

Bias b

Weight W

-1.1
-2.9

{5, 6},
{1I 2I 3' 4}I

{

000011

0.02 0.01 0.00 0.01 0.95 0.91

0.78 0.81 0.92 0.82 0.03 0.00

1 131100
0O 0O0O0O0OTO O

-1.0
-2.1

0.03 0.04 0.07 0.05 0.01 0.00

{1, 2,6) }

110001

093 0.90 0.03 0.01 0.07 0.87

Example from original paper

Results on 1

/m—i:x::r\mx
synthetic g 075
A 05+
data =
0 0.25 - - o
O .
10 10° 104
features
(a) F1 score on scale data (higher is better).
10°
g 10
S 10*
A
£ 10
v 10 |
-E 10") =g — Asso — BinaPs
10 — DEsc - SLim

107 10° 10*

features

Take home message

* NN can operate in the binary space of transaction matrices, and find
find good pattern sets

* The « main trick » is to switch back and forth between binary space for
pattern definition and data reconstruction, and continuous space for
optimization

* The approach scales way better than state of the art in pattern sets
* Opens the possibility to analyze realistic SNPs datasets

Where to go from here?

* Extending the approach to other pattern langages
* Graphs: get help from large body of work on GNN?
* Sequences?
* First, simpler variations of itemsets — ex: generalized itemsets?

* BinaPs optimization (gradient descent) works well = MDL's one
doesn’t: why?
* Could some ways to optimized be « borrowed » to improve MDL-based
approaches heuristics?

* More generally: have we been exploring the pattern space « wrong » all this
time?

